THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010D Advanced Calculus 2019-2020

Solution to Problem Set 3

- 1. Draw the following subsets of \mathbb{R}^2 .
 - (a) $D = \{(x, y) : 0 \le x \le y\};$
 - (b) $D = \{(x, y) : x y > 0\};$
 - (c) $D = \{(x, y) : xy \ge 0\};$
 - (d) $D = \{(x, y) : |x| + |y| < 1\}.$

(Hint: Write down the equation |x| + |y| = 1 explicitly in every quadrant.)

Ans:

- 2. Describe the following subsets of \mathbb{R}^2 .
 - (a) $D = \{(r, \theta) : 1 < r < 2\};$
 - (b) $D = \{(r, \theta) : 0 \le r \le 3, 0 \le \theta \le \pi\}.$

Ans:

- (a) D is an open annulus where the inner and outer radius are 1 and 2 respectively.
- (b) D is the upper half disk with radius 3.
- 3. Match the following polar equations and curves.
 - (a) $r = \cos 2\theta$ for $0 \le \theta \le 2\pi$;

Ans:

(ii)

(a) (ii)

(b) (iii)

(c) (i) (d) (iv)

- 4. Let $S = \{(x, 0) \in \mathbb{R}^2 : x \in \mathbb{R}\}$. Show that
 - (a) $Int(S) = \phi;$
 - (b) $\partial S = S;$
 - (c) $\operatorname{Ext}(S) = \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{R}, y \neq 0\}.$

Ans:

(a) Suppose that (a, b) ∈ ℝ² is an interior point of S. Then there exists r > 0 such that B_r(a, b) ⊂ S. Consider two points (a, b + r/2) and (a, b - r/2) in B_r(a, b), at least one of b + r/2 and b - r/2 is nonzero. That means at least one of the points is not in S, which is a contradiction.
Therefore Int(S) = φ

Therefore, $Int(S) = \phi$.

- (b) Firstly, we claim $S \subset \partial S$. Let $(x, 0) \in S$. Then for all r > 0, we have $(x, 0) \in B_r(x, 0) \cap S$ and $(x, r/2) \in B_r(x, 0) \cap (\mathbb{R}^2 \setminus S)$. Therefore, both $B_r(x, 0) \cap S$ and $B_r(x, 0) \cap (\mathbb{R}^2 \setminus S)$ are nonempty which implies $(x, 0) \in \partial S$.
 - Secondly, we claim any point in $\mathbb{R}^2 \setminus S$ is not a boundary point of S. Let $(x, y) \in \mathbb{R}^2 \setminus S$, where $y \neq 0$. We let r = |y|/2, we can see that $B_r(x, y) \subset \mathbb{R}^2 \setminus S$. Therefore, $B_r(x, y) \cap S$ is empty, which implies (x, y) is not a boundary point of S.
- (c) Firstly, we claim $\mathbb{R}^2 \setminus S \subset \text{Ext } S$. Let $(x, y) \in \mathbb{R}^2 \setminus S$, where $y \neq 0$. We let r = |y|/2, we can see that $B_r(x, y) \subset \mathbb{R}^2 \setminus S$. Therefore, $(x, y) \in \text{Ext } S$.
 - Secondly, let $(x, 0) \in S$. It is clear that for all r > 0, $(x, 0) \in B_r(x, 0)$ is a point in S. Therefore, $B_r(x, 0)$ is not a subset of $\mathbb{R}^2 \setminus S$, which implies (x, 0) is not an exterior point of S.
- 5. Let $S = \{\frac{1}{n} : n \in \mathbb{Z}^+\}$ be a subset of \mathbb{R} .

Write down Int(S) and ∂S .

Ans:

Int
$$(S) = \phi, \ \partial S = \{\frac{1}{n} : n \in \mathbb{Z}^+\} \cup \{0\}.$$

6. Let $S = \{(x, y) \in \mathbb{R}^2 : |x| \ge 1\}$ be a subset of \mathbb{R}^2 .

Show that S is not path connected.

Ans:

Suppose that S is a path connected set.

Since (-1,0) and (1,0) are points in S, there exists a continuous curve $\gamma : [0,1] \to S$ such that $\gamma(0) = (-1,0)$ and $\gamma(1) = (1,0)$.

If we write $\gamma(t) = (x(t), y(t))$, then x(t) is a continuous function with x(0) = -1 and x(1) = 1. By intermediate value theorem, there exists $t_0 \in (0, 1)$ such that $x(t_0) = 0$.

Therefore, $\gamma(t_0) = (x(t_0), y(t_0)) = (0, y(t_0))$ which is a point lying on γ but not in S, which is a contradiction.

7. Let $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ be a subset of \mathbb{R}^2 .

Show that S is a compact set.

Ans:

Firstly, we would like to show that S is closed, but it is equivalent to show that $\mathbb{R}^2 \setminus S$ is an open set.

Let
$$(x_0, y_0) \in \mathbb{R}^2 \setminus S$$
. Then, we have $R = x_0^2 + y_0^2 > 1$.
Let $r = \frac{R-1}{2} > 0$. Then, $B_r(x_0, y_0) \subset \mathbb{R}^2 \setminus S$ which implies $\mathbb{R}^2 \setminus S$ is open
Clearly, S is bounded, so S is a compact subset in \mathbb{R}^2 .

- 8. Let $S = \{(e^t \cos t, e^t \sin t) \in \mathbb{R}^2 : t \in \mathbb{R}\}$ be a subset of \mathbb{R}^2 . Prove that
 - (a) S is unbounded;
 - (b) $\mathbf{0} = (0, 0)$ is a boundary point of S.

Ans:

(a) Let M > 0. By taking $t_0 \in \mathbb{R}$ such that $t_0 > \ln M$, we have $e^{t_0} > M$. Then, consider $\mathbf{p} = (e^{t_0} \cos t_0, e^{t_0} \sin t_0) \in S$, we have $|\mathbf{p}| = \sqrt{(e^{t_0} \cos t_0)^2 + (e^{t_0} \sin t_0)^2} = e^{t_0} > M$. Therefore, S is unbounded.

(b) Let r > 0. By taking $t_0 \in \mathbb{R}$ such that $t_0 < \ln r$, we have $e^{t_0} < r$. Then, consider $\mathbf{p} = (e^{t_0} \cos t_0, e^{t_0} \sin t_0) \in S$, we have $|\mathbf{p}| = \sqrt{(e^{t_0} \cos t_0)^2 + (e^{t_0} \sin t_0)^2} = e^{t_0} < r$ and so $\mathbf{p} \in B_r(\mathbf{0}) \cap S$.

Also, consider $\mathbf{q} = (e^{t_0} \cos(t_0 + \frac{\pi}{2}), e^{t_0} \sin(t_0 + \frac{\pi}{2})) \in \mathbb{R}^2 \setminus S$, we have $|\mathbf{q}| = \sqrt{[e^{t_0} \cos(t_0 + \frac{\pi}{2})]^2 + [e^{t_0} \sin(t_0 + \frac{\pi}{2})]^2} = e^{t_0} < r$ and so $\mathbf{q} \in B_r(\mathbf{0}) \cap \mathbb{R}^2 \setminus S$.

Therefore, $\mathbf{0} = (0,0)$ is a boundary point of S.